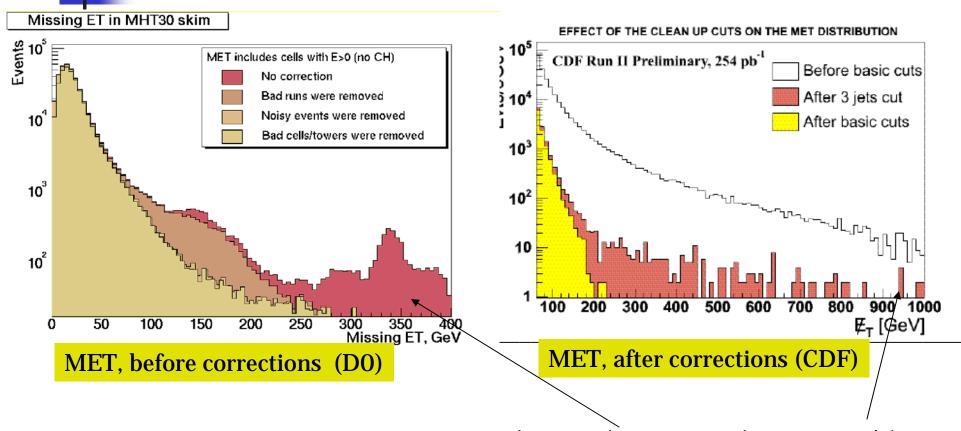

Missing Energy and New Physics

Amit Lath Rutgers, the State University of NJ

What is MET?

$$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} = -\Sigma (E_n \sin \theta_n \cos \phi_n \hat{\mathbf{i}} + E_n \sin \theta_n \sin \phi_n \hat{\mathbf{j}})$$
$$= E_x^{\mathrm{miss}} \hat{\mathbf{i}} + E_y^{\mathrm{miss}} \hat{\mathbf{j}}$$



Different stages of MET

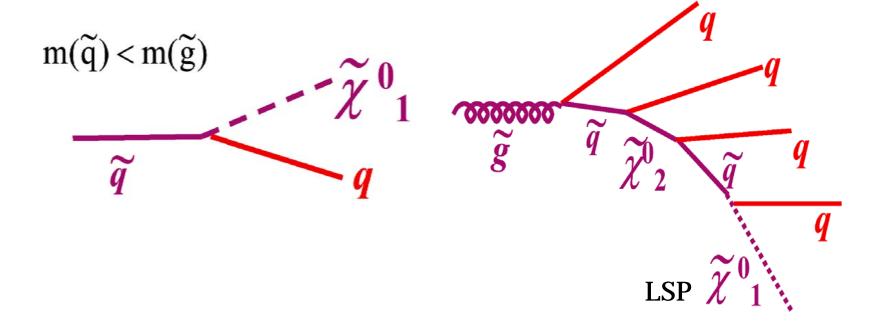
- L1 MET for triggering
- Corrected MET for analysis:
 - $\mu/e/\tau$ correction
 - vertex corrections
 - hot/dead channels
 - jet energy corrections
 - ...and many more.

MET at Tevatron

This is where new physics would sit

What physics with MET?

- Large MET (> 200 GeV)
 - Extra Dimension searches (monojet)
 - SUSY (gluino searches: jets+MET)
- Medium/Low MET (~ 50 100 GeV)
 - Top quark
 - Ditau
 - H→WW*
- Very Low MET (~ 20 GeV)
 - $W \rightarrow \ell \nu$


Physics with LARGE MET

Squark+gluinos with MET

If R-parity is conserved, LSP should give LARGE MET.

CMS Study: >= 3 jets with large MET (>200 GeV) squark = 550 GeV, gluino = 600 GeV.

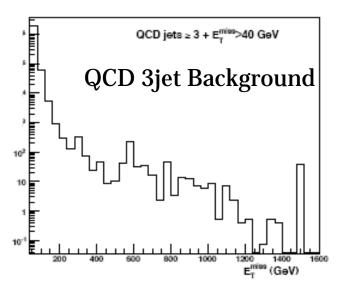
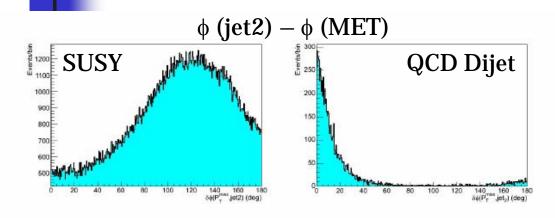
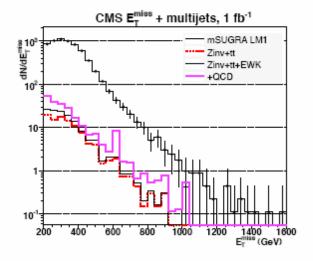

Squark + gluinos (CMS)

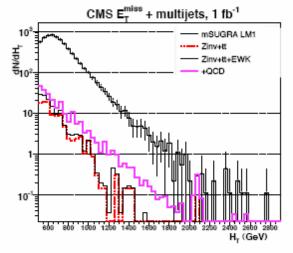
Table 4.2: The $E_{\mathrm{T}}^{\mathrm{miss}}$ + multi-jet SUSY search analysis path


Requirement	Remark			
Level 1	Level-1 trigger eff. parameter.			
$\overline{\text{HLT}}$, $E_T^{miss} > 200 \text{GeV}$	trigger/signal signature			
primary vertex ≥ 1	primary cleanup			
$F_{em} \ge 0.175, F_{ch} \ge 0.1$	primary cleanup $M_0 =$			
$N_j \ge 3, \eta_d^{1j} < 1.7$	signal signature			
$\delta \phi_{min}(E_T^{miss} - jet) \ge 0.3 \text{ rad}, R1, R2 > 0.5 \text{ rad},$				
$\delta \phi(E_T^{miss} - j(2)) > 20^{\circ}$	QCD rejection			
$Iso^{ttrk} = 0$	ILV (I) $W/Z/t\bar{t}$ rejection			
$f_{em(j(1))}, f_{em(j(2))} < 0.9$	ILV (II), $W/Z/t\bar{t}$ rejection			
$E_{T,j(1)} > 180 \text{ GeV}, E_{T,j(2)} > 110 \text{ GeV}$	signal/background optimisation			
$H_T > 500 \text{GeV}$	signal/background optimisation			
SUSY LM1 signal efficiency 13%				

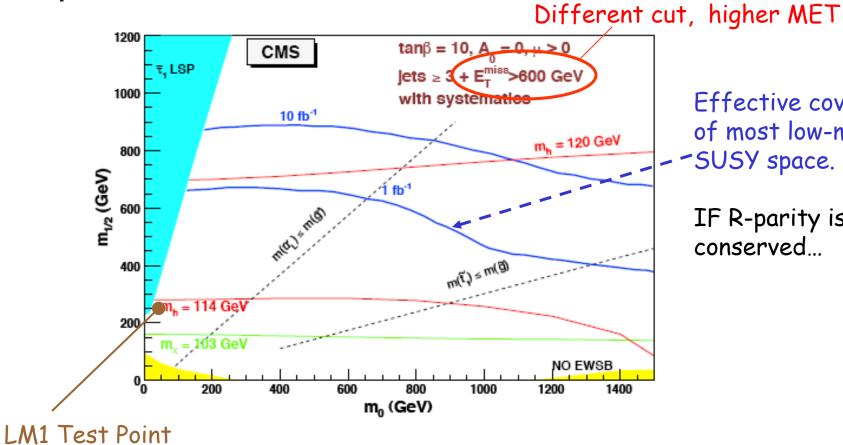
LM1 Test Point m(gluino)=600 GeV m(squark)=550 GeV

 $\tilde{g}\tilde{q}$ is 53%, $\tilde{q}\tilde{q}$ 28% and $\tilde{g}\tilde{g}$ 12%. = 60 GeV/c², $M_{1/2} = 250$ GeV/c². = $A_0 = 0$, $\mu > 0$ and $\tan \beta = 10$




Squark gluino reach.

IF MET behaves, 5σ obs of low mass SUSY (Test point LM1) observable with 6pb-1.


Figure 4.11: $\delta\phi_2=|\phi_{{\bf j}(2)}-\phi(E_T^{miss})|$ for (left) SUSY signal and (right) QCD dijet events

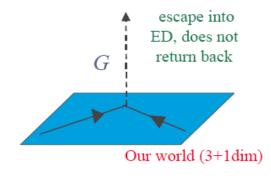
SUSY reach

Effective coverage of most low-mass -SUSY space.

IF R-parity is conserved...

Extra Dimensions (ADD)

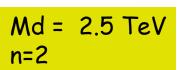
Large Extra Dimensions (ADD) Model

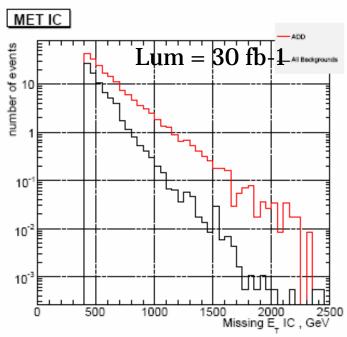

("ADD" => N. Arkani-Hamed, S. Dimopoulos, and G.Dvali)

•
$$M_{Pl}^2 \sim R_c^n M_D^{2+n}$$

- M_{Pl}: Planck scale
- R_c : radius of ED
- M_D: new effective fundamental scale
- n : # extra dimensions

- •Large extra dimension : R~1mm for n=2, M_D ~ 1TeV
- Kaluza-Klein states of Graviton is dense and evenly spaced
 - Mass spectrum appear continuous
 - Interfere with SM scattering amplitude


•Direct G emission :



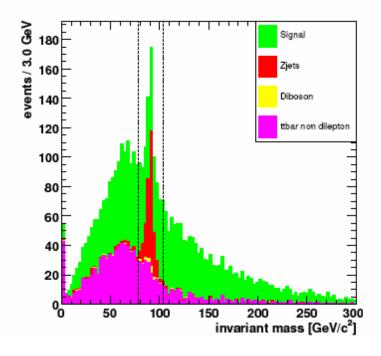
LED: Photon + MET

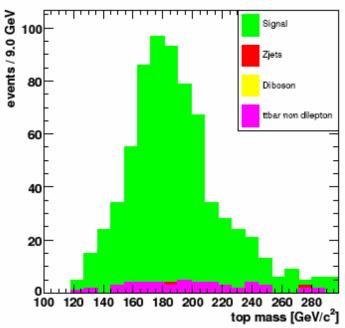
- Photon pt > 400 GeV
- MET > 400 GeV
- Δ phi(photon, MET) > 2.5
- No tracks > 40 GeV

LED Reach Photon+MET

 M_D : Fundamental Plank mass; n = # ED.

$\mathrm{M}_{\mathrm{D}}/n$	n = 2	n = 3	n = 4	n = 5	n = 6	
$M_D=1.0\ {\rm TeV}$						
$M_{\rm D}=1.5~{\rm TeV}$	$0.83~{\rm fb}^{-1}$	0.59 fb ⁻¹	$0.56~{ m fb}^{-1}$	$0.61 \mathrm{fb}^{-1}$	0.59 fb ⁻¹	
$M_D=2.0\ \mathrm{TeV}$	2.8 fb ⁻¹	2.1 fb ⁻¹	1.9 fb ⁻¹	2.1 fb ⁻¹	2.3 fb ⁻¹	
$M_D=2.5 \ \mathrm{TeV}$	9.9 fb ⁻¹	8.2 fb ⁻¹	8.7 fb ⁻¹	9.4 fb ⁻¹	10.9 fb ⁻¹	
$M_{\rm D}=3.0~{\rm TeV}$	47.8 fb ⁻¹	46.4 fb ⁻¹	64.4 fb ⁻¹	100.8 fb ⁻¹	261.2 fb ⁻¹	
$M_D=3.5 \ \mathrm{TeV}$	5 σ discovery not possible anymore					

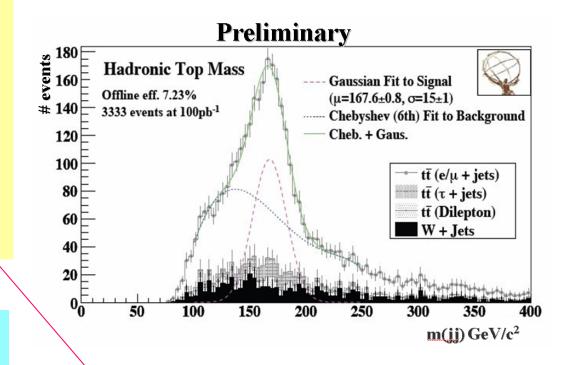

TeV scale reached well below 1 fb-1.


Medium /Low MET Analyses

Di-Leptonic ttbar (CMS)

	LO (pb)						
	Signal	τ	WW	WZ	ZZ	Z + jets	other $tar{t}$
Before selection	24.3	30.4	7.74	0.89	0.11	3912	438
Level-1 + HLT	19.4	15.1	4.4	0.37	0.07	657	92
2 jets $E_{\rm T} > 20 {\rm GeV}$	11.5	9.8	0.6	0.012	0.006	23.9	73.1
$E_{\mathrm{T}}^{\mathrm{miss}} > 40\mathrm{GeV}$	9.6	8.1	0.5	0.01	0.003	5.8	53.6
Two opp. charged leptons	3.2	0.42	0.04	0.001	0.001	1.17	0.12
b-tag of two highest $E_{ m T}$ jets	> 1.12	0.15	0.002	$\sim 10^{-4}$	$\sim 10^{-5}$	< 0.01	0.05

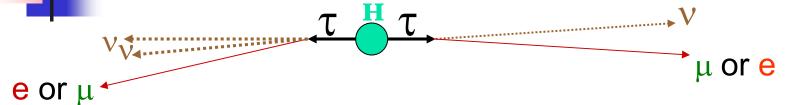
Only slight improvement in background rejection

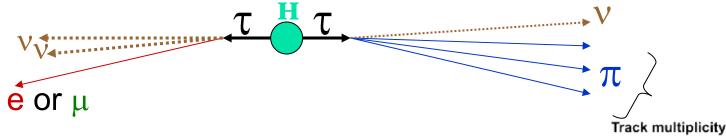

Semi Leptonic ttbar (ATLAS)

Selection A

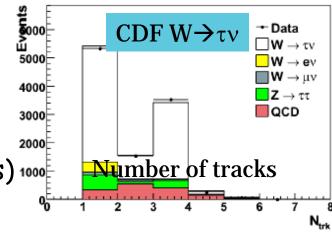
- 1 high-pT lepton > 20 GeV/c
- at least 3 high-pT jets > 40 GeV/c
- 1 high-pT jets > 20 GeV/c
- ET miss>20 GeV
- |eta(lepton)|<2.4, |eta(jet)|<2.5
- top is reconstructed as the 3-jet combination with the highest PT sum

Selection B

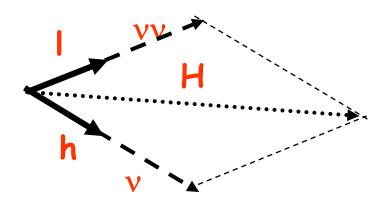

- Same as selection A
- additional cut |mjj-MW|<10 GeV

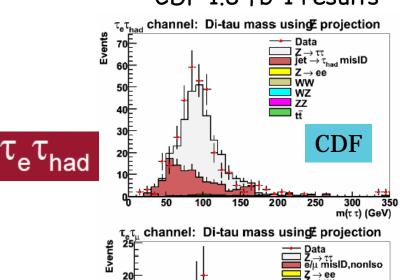


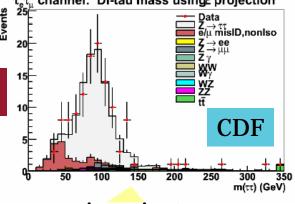
At (below?) resolving power of MET



Ditau analyses

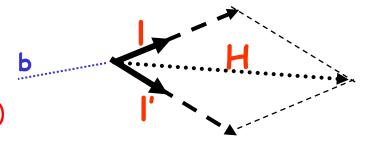

- · Identifying hadronic tau is possible
 - ·Nested signal/isolation cones
- Need to separate from Z
 - Mvis (used in CDF, broad dist)
 - Invariant mass (no back-to-back taus) 1000

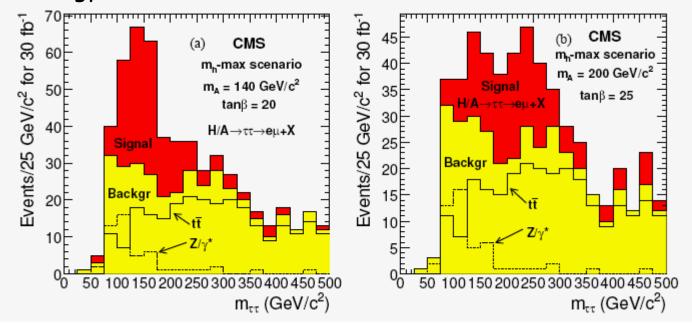

Ditau invariant mass


Assume tau decay products are collinear to tau directions - aka "projection method".

Requires good resolutions at low MET.

Does it work? CDF 1.8 fb-1 results

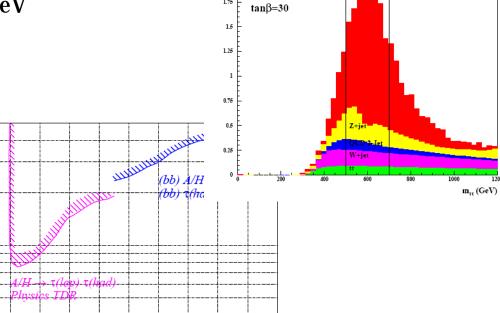




Higgs → ditau (CMS)

- ·2 isolated leptons
- •1 b-tag (but associated b is soft)
- ·Only 1 extra central jet
- ·NO MET cut (but used in mass reco)

•Positive solution to v energy



Higgs to ditau (ATLAS)

- 1. Two (had) τ 's pT; > 100 GeV
- 2. No lepton with pT > 10 GeV
- 3. <= 4 jets in with pT > 20 GeV
- 4. At least one b-jet tagged
- 5. **MET** > **65 GeV**
- 6. *Dphi* b τ-τ: 145 175 deg
- 7. mT < 50 GeV

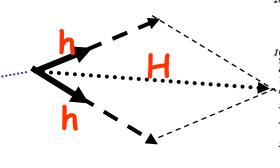
b

• 8. ττ mass recon possible

ATLAS

400

500 600

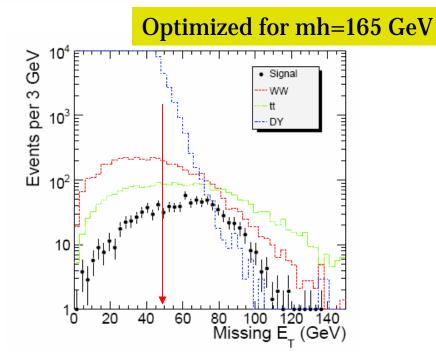

L dt = 30 fb

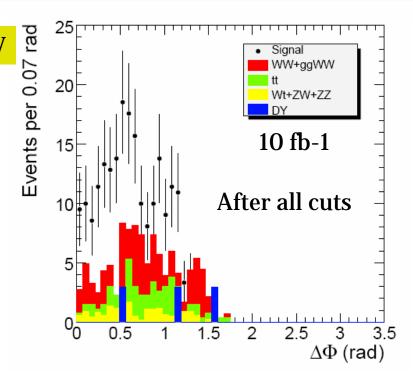
m (GeV)

 m_A =600 GeV

A/H

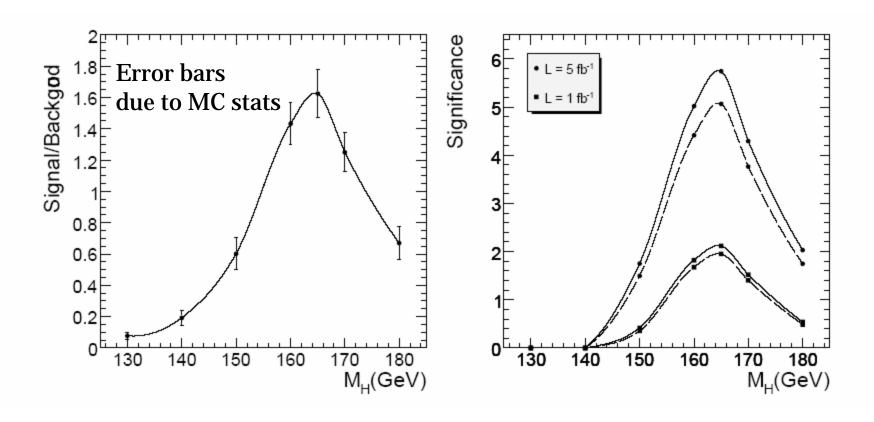
ATLAS


$H\rightarrow WW^*$


$$\frac{q \; \bar{q} \to W^+W^- \to 2\mu 2\nu}{g \; g \to t \; \bar{t} \to 2\mu 2\nu}$$

$$g \ g \rightarrow t \ \bar{t} \rightarrow 2\mu 2\nu$$

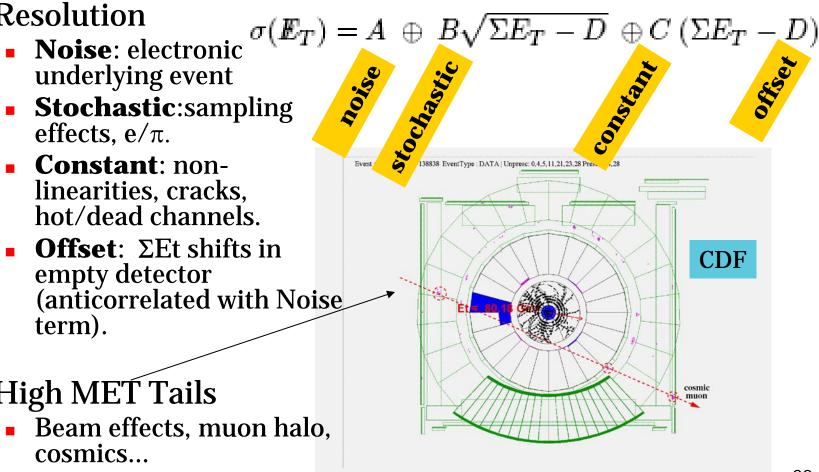
$$q \; \bar{q} \rightarrow \gamma^*, Z \rightarrow 2\mu$$

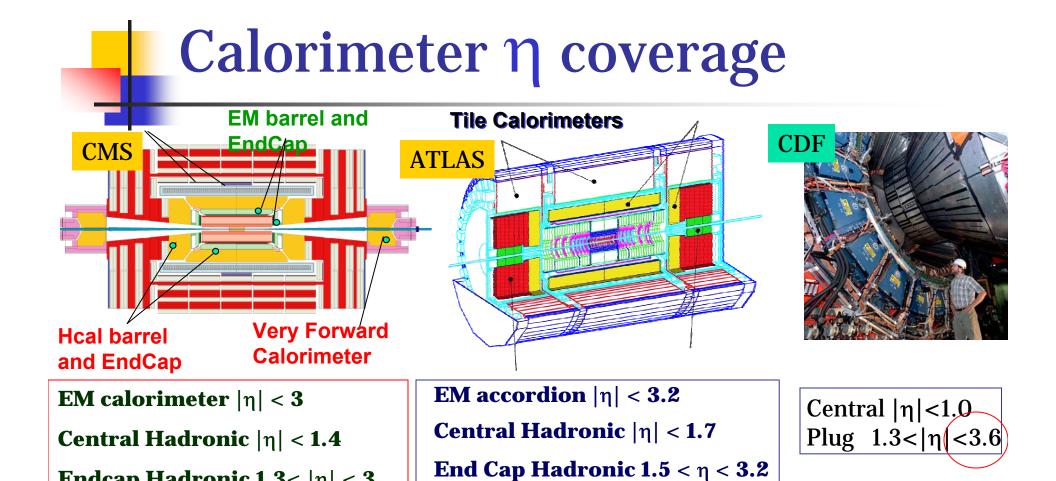

1	L1+HLT dimuon	6 (MET> 50 GeV
2	2μ opposite charge	7	$35 \text{ GeV/c} < P_T(\mu_{max}) < 55 \text{ GeV/c}$
3	Isolation	8	$25 \text{GeV/c} < P_T(\mu_{min})$
4	$\eta < 2.0$ $IP < 3\sigma$	9	$m_{\mu_1\mu_2} < 50 \text{GeV/c}^2$
5	Jet Veto	10	$\Delta \phi_{\mu_1 \mu_2} < 0.8$

H→WW* reach

Resolution

underlying event


Stochastic:sampling effects, e/π .


Constant: nonlinearities, cracks, hot/dead channels.

Offset: Σ Et shifts in empty detector (anticorrelated with Noise term).

High MET Tails

Beam effects, muon halo, cosmics...

Better eta coverage → Better performance on MET const term.

Forward cal

 $3.1 < \eta < 4.9$

Endcap Hadronic 1.3< $|\eta|$ < 3

Forward calorimeter $2.9 < \eta < 5$

Segmentation, interaction lengths

EM calorimeter $|\eta| < 3$:

PbW04 crystals

 $\Delta \eta \times \Delta \varphi = \mathbf{0.0174} \times \mathbf{0.0174}$

Central Hadronic $|\eta| < 1.7$

Brass/scintillator

 $\Delta \eta \times \Delta \varphi = \mathbf{0.087} \times \mathbf{0.087}$

Endcap Hadronic 1.3< $|\eta|$ <3

Brass/scintillator +WLS

 $\Delta \eta \times \Delta \varphi = \sim 0.15 \times 0.17$

Forward calorimeter

3<η<**5**

Fe/quartz fibers

 $\Delta \eta \times \Delta \phi = \sim 0.175 \times 0.17$

ATIAS EM accordion

 $|\eta| < 3.2 : Pb/LAr$

 $\Delta \eta \times \Delta \phi \sim \mathbf{0.025} \times \mathbf{0.025}$

Central Hadronic

 $|\eta| < 1.7$: Fe / scint

 $\Delta \eta \times \Delta \phi \sim 0.1 \times 0.1$

End Cap Hadronic

 $1.5 < \eta < 3.2 \text{ Cu/LAr}$

 $\Delta \eta \times \Delta \phi < \mathbf{0.2} \times \mathbf{0.2}$

Forward calorimeter

 $3.1 < \eta < 4.9$:

EM Cu/LAr - HAD W/Lar

 $\Delta \eta \times \Delta \phi = \mathbf{0.2} \times \mathbf{0.2}$

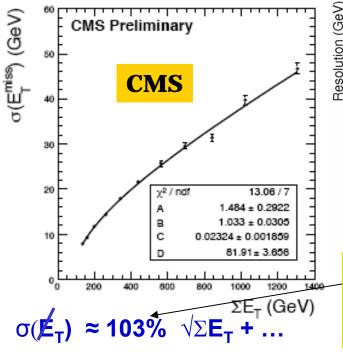
CDF

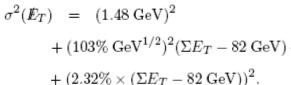
Central $|\eta|$ <1.0

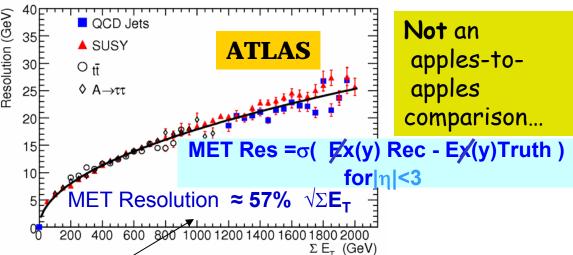
 $\Delta \eta \times \Delta \phi \sim 0.11 \times 0.26$

Plug $1.3 < |\eta| < 3.6$

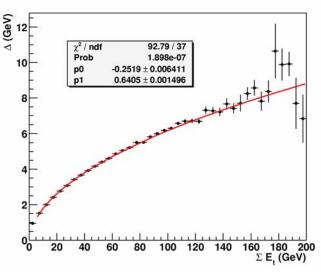
Δη×Δφ


from $\sim 0.11 \times 0.13$


 $\sim 0.36 \times 0.26$

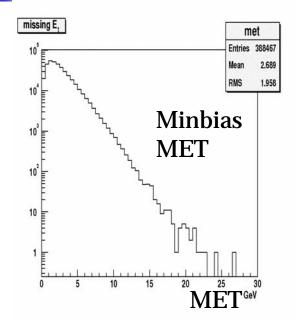

CDF 5,5 - 7λ

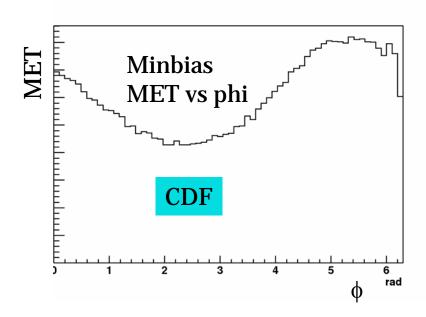
MET Performance (stochastic term)



ATLAS cal has more longitudinal segmentation: (e/pi)

Minbias data, underestimate stochastic term.

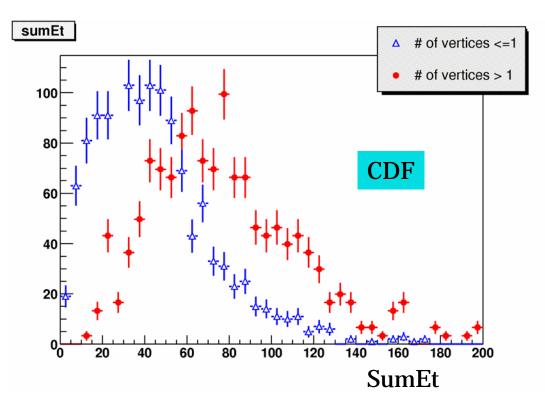




Some MET Peculiarities from CDF

MET Peculiarities

MET has a phi dependence ~ few GeV. → collision not centered at 0,0,0.


MET Peculiaritiess

SumEt from $Z \rightarrow \mu\mu$ events

Events with 2nd vertex have significantly higher SumEt.

Jets from 2nd vertex could affect MET calculation.

This will depend on lum, but non-trivial numbers at low luminosity.

Hopefully not as big a problem at LHC (smaller beam ellipse than Tevatron)

MET Peculiarities

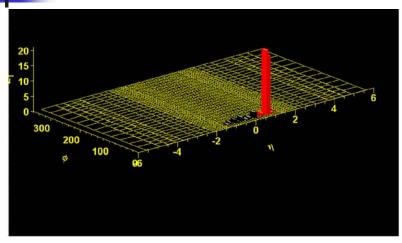
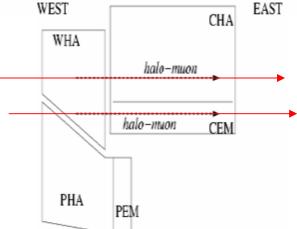
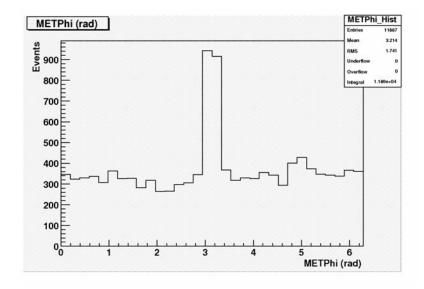




Figure 1: An $\eta - \phi$ plot of the energy in the calorimeter towers of a bunch crossing event that has a halo muon traversing through the central calorimeter in the direction parallel to the beam axis.

Beam halo muons can deposit large amounts of IN-TIME energy.

EM/HAD ratio is fairly lopsided.

MET Peculiarities

Energy deposited in the Ring of Fire (highest eta towers)

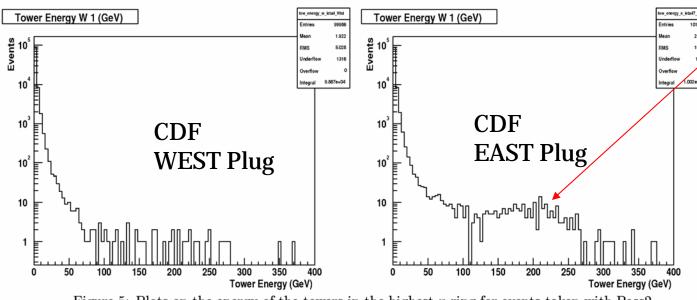
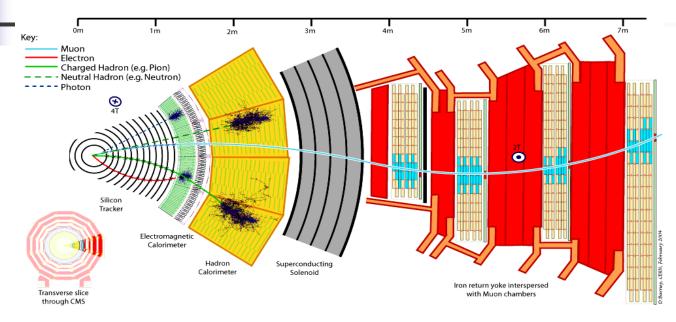



Figure 5: Plots on the energy of the towers in the highest η -ring for events taken with Pass2 MET25 trigger (with Level-2 and Level-3 pass through). (Left) Towers from the west Plug calorimeter. (Right) Towers from the east Plug calorimeter.

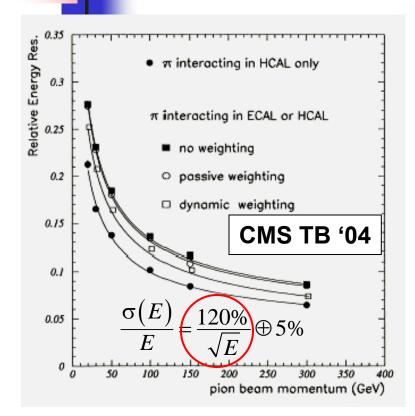
W Plug should get pbars in time, but pbar flux is small.

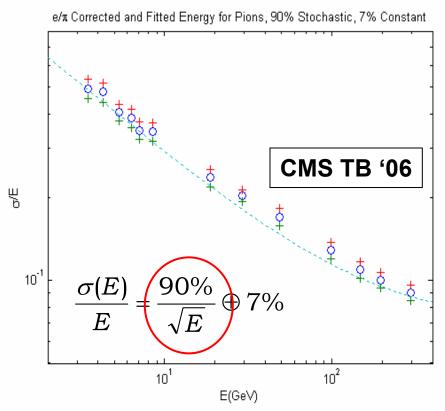
Particle Flow: Improving MET

Current MET: all calorimeter (+muon correction)

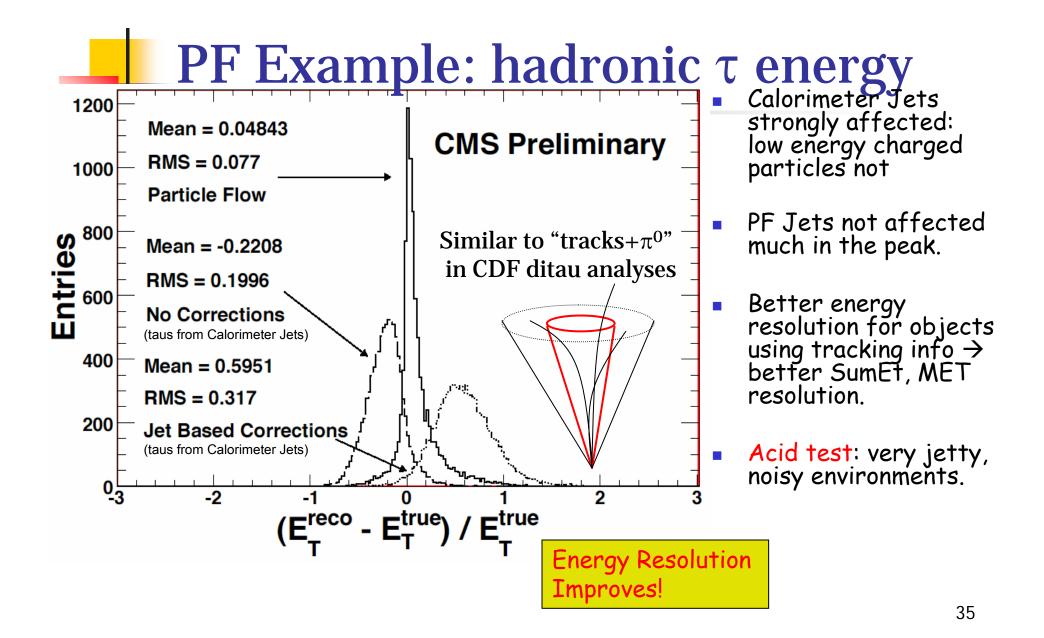
Particle Flow:

Biggest problem in MET: hadron energy.


Identify e, γ , π , μ , charged/neutral hadrons, pileup, etc, and "correct". Harder in jetty environment, but what isn't?


Benefits of Particle flow

- Motiviation: The energy of a typical jet consists roughly of
 - Charged particles: ~60%
 - •Mostly charged pions, kaons and protons, but also some electrons and muons
 - •Photons : ~25%
 - •Mostly from π^0 's, but also some genuine photons (brems,...)
 - Long-lived neutral hadrons: ~10%
 - •K⁰_L, neutrons
 - •Short-lived neutral hadrons, "V"'s": ~5%
 - •K⁰_S $\rightarrow \pi^+\pi^-$, $\Lambda \rightarrow \pi^-$ p, ..., but also γ conversions, and (more problematic) nuclear interactions in the detector material.
- Energy resolution determined (ideally) mostly by
 - the 10% neutral hadrons
 - inefficiencies in charged hadron reconstruction
- Attempt to use Full Detector/Event Information in MET reconstruction
 - Determine MET from calibrated, reconstructed particles

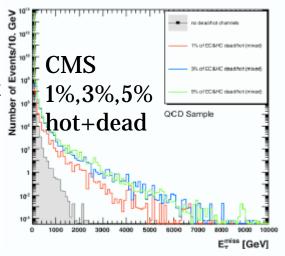


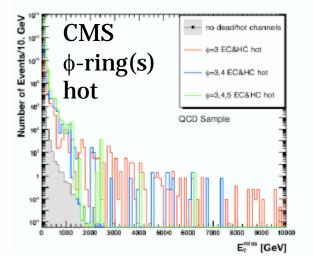
Improving e/π helps!

Good beam conditions in 2006 combined with very clean Particle ID

- MET is as difficult to reconstruct as it is important.
 - Current MET resolutions are only starting points.
 - Expect ATLAS vs CMS differences to get smaller
 - CMS learns to use tracking (PF).
 - Of course, ATLAS will also keep improving...
 - Bottom line: ATLAS has better cal; CMS: better tracking.
- Biggest problems in MET reconstruction will not be known until beams collide.
 - Look for beam effects, dead/hot channels, miscalib...
- Once MET is understood, lots of analyses benefit: low mass SUSY, LED, ditaus...

Backup stuff




ATLAS vs. CMS MET

- ATLAS constant term ~ zero.
- CMS stochastic higher than ATLAS stochastic (but ATLAS quotes MET reco-truth...):

ATLAS has

- 6 radial cal segments
- e/π ratio closer to 1
- (slightly) more λ
- Object based calib (em, had, other...)
- CMS will need to use tracking info to compete (Particle Flow)
- Other effects (dead/hot channels)

